

HM 150

Base module for experiments in fluid mechanics

Description

- water supply for experimental units for fluid mechanics
- volumetric flow rate measurement for large and small flow rates
- comprehensive range of accessories allows a complete course in the fundamentals of fluid mechanics

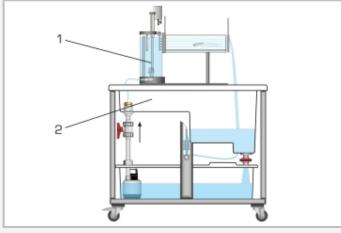
The HM 150 series of devices permits a varied experimental cross-section in the fundamentals of fluid mechanics. The base module HM 150 provides the basic equipment for individual experiments: the supply of water in the closed circuit; the determination of volumetric flow rate and the positioning of the experimental unit on the working surface of the base module and the collection of dripping water.

The closed water circuit consists of the underlying storage tank with a powerful submersible pump and the measuring tank arranged above, in which the returning water is collected. The measuring tank is stepped, for larger and smaller volumetric flow rates. A measuring beaker is used for very small volumetric flow rates. The volumetric flow rates are measured using a stopwatch.

The top work surface enables the various experimental units to be easily and safely positioned. A small flume is integrated in the work surface, in which experiments with weirs (HM 150.03) are conducted.


Learning objectives/experiments

together with the accessories
HM 150.01 – HM 150.39:
Introduction to the fundamentals of fluid mechanics



HM 150

Base module for experiments in fluid mechanics

1 flow control valve, 2 overflow, 3 storage tank with submersible pump, 4 gate valve for emptying the measuring tank, 5 measuring tank level indicator, 6 measuring tank

HM 150.21 (1) placed on the base module HM 150 (2)

Base module for experiments in fluid mechanics with plate weir HM 150.03

Specification

- [1] base module for supplying experimental units in fluid mechanics
- [2] closed water circuit with storage tank, submersible pump and measuring tank
- [3] measuring tank divided in two for volumetric flow rate measurements
- [4] measuring beaker with scale for very small volumetric flow rates
- [5] measurement of volumetric flow rates by using a stopwatch
- [6] work surface with integrated flume for experiments with weirs
- [7] work surface with inside edge for safe placement of the accessory and for collecting the dripping water
- [8] storage tank, measuring tank and work surface made of GRP

Technical data

Pump

- power consumption: 250W
- max. flow rate: 150L/min
- ∎ max. head: 7,6m

Storage tank, capacity: 180L

Measuring tank

- at large volumetric flow rates: 60L
- at small volumetric flow rates: 10L

Flume

■ LxWxH: 530x150x180mm

Measuring beaker with scale for very small volumetric flow rates

capacity: 2L

Stopwatch

■ measuring range: 0...9h 59min 59sec

230V, 50Hz, 1 phase 230V, 60Hz, 1 phase; 120V, 60Hz, 1 phase UL/CSA optional LxWxH: 1230x770x1070mm Weight: approx. 85kg

Scope of delivery

- 1 base module
- 1 stopwatch
- 1 measuring cup
- 1 set of accessories
- 1 manual

HM 150 Base module for experiments in fluid mechanics

Optional accessories

Principles of hydros		
070.15002	HM 150.02	Calibration of pressure gauges
070.15005	HM 150.05	Hydrostatic pressure in liquids
070.15006	HM 150.06	Stability of floating bodies
070.15039	HM 150.39	Floating bodies for HM 150.06
Principles of hydrodynamics		
070.15007	HM 150.07	Bernoulli's principle
070.15008	HM 150.08	Measurement of jet forces
070.15009	HM 150.09	Horizontal flow from a tank
070.15012	HM 150.12	Vertical flow from a tank
070.15014	HM 150.14	Vortex formation
070.15018	HM 150.18	Osborne Reynolds experiment
Flow in pipes		
070.15001	HM 150.01	Pipe friction for laminar / turbulent flow
070.15011	HM 150.11	Losses in a pipe system
070.15029	HM 150.29	Energy losses in piping elements
070.15013	HM 150.13	Methods of flow measurement
Open-channel flow		
070.15003	HM 150.03	Plate weirs for HM 150
070.15021	HM 150.21	Visualisation of streamlines in an open channel
Flow around bodies		
070.15010	HM 150.10	Visualisation of streamlines
Fluid machinery		
070.15004	HM 150.04	Centrifugal pump
070.15016	HM 150.16	Series and parallel configuration of pumps
070.15019	HM 150.19	Operating principle of a Pelton turbine
070.15020	HM 150.20	Operating principle of a Francis turbine
Transient flow		
070.15015	HM 150.15	Hydraulic ram – pumping using water hammer