GUNT-Labline Complete course on fluid machinery

The GUNT-Labline "Fluid Energy Machines" allows an easy introduction to a complex subject. The experimental units offer basic experiments to familiarise students with the function, the operating behaviour and the most important characteristics of positive displacement and turbomachines. Transparent housings allow observation during operation. The GUNT-Labline comes with microprocessor-based metrology and a device-specific GUNT software for control and data acquisition via USB.

Advantages of the device conception:

- the compact design enables mobile use of the experimental units
- easy transport thanks to handles on the tabletop devices and rollers on the frame
- the same device can be used for demonstration purposes in the lecture hall or the classroom or to conduct experiments in the laboratory
- only a power connection is required for operation of the equipment
- no external water supply required thanks to closed water circuits
- despite complex metrology and software analysis, the devices do not require any complicated wiring: a USB connection to the computer is sufficient
- transparent housing and clear arrangement provide an excellent insight on the functions of the components and on the procedures for operation of the equipment
- damage caused by incorrect operation is very rare thanks to the way in which the devices are designed
- the compact size of the experimental units and the low price make it easy to fit out a classroom or laboratory with a larger number of experiment workstations

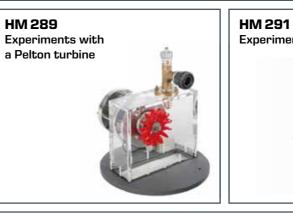
Ideas in the didactic concept:

- a self-contained course on the topic of fluid energy machines
- the experimental units of one sub-field complement each other in terms of learning objectives
- each experimental unit forms a self-contained learning unit
- effective learning in small groups (2-3 people)
- the direct proximity to the experimental unit encourages inquisitive exploration of the technology
- development of characteristic properties of various types of machines
- comparison and evaluation of different types of machines

In addition, the common fundamentals of the experimental techniques can be practised, for example:

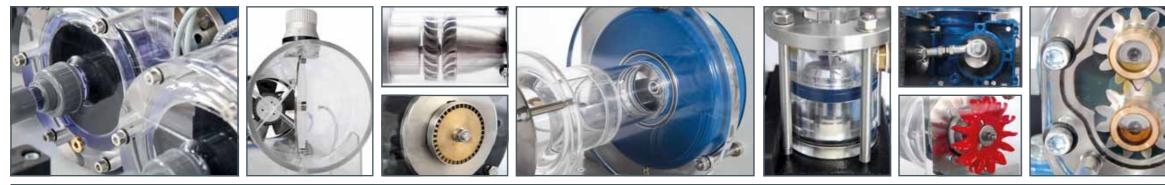
- selecting the chart axes
- selecting the increment when varying parameters
- waiting for the steady state
- averaging over time with fluctuating readings, etc.

Experiments for different fans and a radial compressor



Experiments for different water turbines

Experiments for centrifugal and positive displacement pumps



Learning concept of the GUNT-Labline range

Advantages of the learning concept

In order to enable optimal teaching in the demanding field of fluid energy machines, we have developed a learning concept that perfectly combines the various advantages of mechanical models, device-specific software and the instructional material.

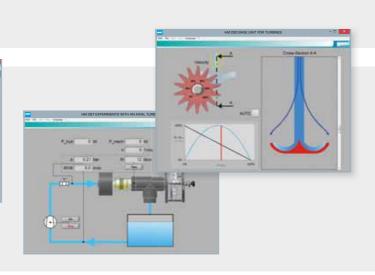
Simple and clear mechanical models of the machines are connected to the PC via USB. Operation, measurement, display and analysis of measurement data are all carried out on the PC. To this end, the electronic data acquisition and control components are fully integrated into the models. The PC is therefore an integral part of the system. We call this the Hardware-Software Integration approach, or HSI for short.

The experimental units represent self-contained learning units, complementing the experimental units from a sub-field in terms of the learning objectives. During the experiments, importance is placed on the development of characteristic properties of the various types of machine. This allows the students to perform an evaluative comparison of the machine types and to assimilate criteria for later work in practice. The advantages and disadvantages of different types of machines can be demonstrated and discussed.

Instructional material in paper form

A fundamental section with the relevant theory and model-based experiment instructions allow an intensive preparation for the experiment. Sample experiment results allow a qualified assessment of the students' own results.

Our didactic materials offer excellent support when preparing lessons, when conducting the experiments and when reviewing the experiment.


Mechanical model

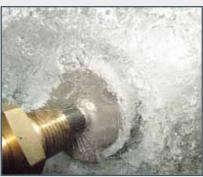
Housing, pipes and tanks are transparent and provide a view of the key components and flow processes during operation (vortex, air bubbles, cavitation). Operating and flow noise and vibrations produce a realistic impression.

All this makes the function and processes in a machine understandable and guarantees a sustainable learning experience.

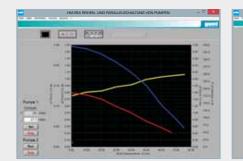
Device-specific GUNT software

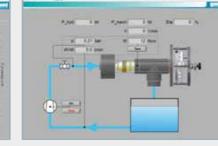
The software forms a bridge between the mechanical model and the instructional material in paper form.

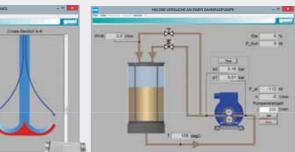
The software reflects the behaviour of the machine in specific measurements. The machine's behaviour can be studied and discussed in form of characteristic curves. Through simulation, the software provides the ability to visualise flow processes that cannot be seen and to show them in slow motion.



Water jet in the reaction turbine HM 288


In particular the energy conversion between a mechanical component and a fluid in a fluid energy machine is easily understood.


Learning concept of the GUNT-Labline range


A wide range of experiments with a variety of options

Device-specific GUNT software, together with the microprocessor, provides software-based experiment execution and assessment

- record typical characteristic curves
- measurement of the mechanical, electrical and hydraulic power as well as power consumption
- determine the efficiency
- effect of speed on pressure and flow rate
- advantages and disadvantages of various fluid energy machines
- how the impeller shape affects the characteristic and efficiency
- occurrence of cavitation
- function of an air vessel

Overview of the topics

Fans, compressors Pumps typical dependence of pressure powers and eff typical dependence of flow rate HM 283 Experiments wit pump typical depend and flow rate o characteristic pump Experiments with an axial fan effect of direct characteristic of an axial fan cavitation HM 284 pumps istics HM 285 Experiments with a piston pump

mechanical drive power

HM 286

- typical dependence of pressure and flow rate on the speed pressure limitation • characteristic of a displacement
- - pump

hydraulic power output and Experiments with a radial fan characteristic of a radial fan

effect of the impeller shape

HM 282

on speed

on speed

efficiency

HM 280

- stall

HM 292

Experiments with a radial compressor

- characteristic of a 2-stage radial compressor
- stage pressure ratio
- temperature increase

Series and parallel connected

- individual and overall character-
- efficiency considerations and areas of application
- typical characteristic of a
- displacement pump
- cyclical pump process over time
- p,V diagram and internal power
- pulsation and air vessel

	Turbines
fficiency	 torque/speed characteristic curve hydraulic input power, mechanical output power efficiency
th a centrifugal dence of pressure on the speed c of a centrifugal tion of rotation	 HM 287 Experiments with an axial turbine power regulation HM 288 Experiments with a reaction turbine partial load behaviour
	HM 289

- advantages and disadvantages of series and parallel connections

Experiments with a gear pump

HM 289

Experiments with a Pelton turbine

partial load behaviour with needle adjustment compared to a throttle control

HM 291

Experiments with an action turbine

partial load behaviour with regulation via number of nozzles compared to a throttle control