Basic knowledge Static and kinetic friction

While in statics, we study idealised bodies excluding frictional forces, in the study of static and kinetic friction, we investigate real solid bodies. Friction occurs in all solid bodies that are in contact and that are moved against each other. The cause of the occurring forces is, among other things, the surface roughness, which causes the surfaces to interlock.

Top two solid bodies, both with high surface roughness; bottom one solid body with high surface roughness and one body with low surface roughness

Coulomb's low of friction		
states that the frictional		
force is proportional to		
the normal force.		
The proportionality		
factor µ depends on the		
materials pairing of the		
bodies and is called the		
coefficient of friction.		

 $F_{R} = \mu \cdot F_{N}$

Typical values for the coefficient of friction μ		
Materials pairing	Coefficient of friction $\boldsymbol{\mu}$	
steel on steel	0,1 bis 0,4	
steel on teflon	0,04	
aluminium on aluminium	1,1 bis 1,7	
wood on wood	0,3	

for example tensile force

Types of friction

We differentiate between two types of friction: static friction, where there is no movement of the bodies relative to each other and dynamic friction, where the surfaces move relative to each

other. The roughness of the surfaces is described by the coefficient of friction μ_S , for static and μ_K , for dynamic friction.

FG

F_G weight, F_B frictional force, F_N normal force, F external force,

Static friction

Static friction is present if displacing forces are acting on both bodies, but the bodies have not started to move relative to each other yet. This is why we also talk about static friction that has to be overcome if we want to move a body. Static friction is a reaction force; in statically determinate systems, it can be determined from the equilibrium conditions.

The body adheres to its under-layer

 F_G weight, F_H force of static friction, F_N normal force, F external force, v velocity

F ≤ F _{Hmax}	$F_{Hmax} = \mu_{S} \cdot F_{N}$	
F_{Hmax} maximum force of static friction, μ_S coefficient of static friction, F_N normal force, F external force		

The proportionality constant is called the coefficient of static friction μ_S . It depends on the material and the surface characteristics of the respective body. Whenever the applied force exceeds the maximum static friction, a body begins to slide.

When calculating friction: the coefficient of dynamic friction $\mu_{\rm K}$ is generally smaller than the coefficient of static friction $\mu_{\rm S}$.

Dynamic friction

Dynamic friction occurs when a body moves along another and in contact with it, i.e. it actually rubs against it. Dynamic friction increases with the roughnesses of the bodies' surfaces and the pressure applied between the bodies. The dynamic friction force is a physical force (active force) and proportional to the normal force $\mathbf{F}_{\mathbf{N}}$.

The body slides over its underlayer

 F_{G} weight, F_{R} force of dynamic friction, F_{N} normal force, F external force, v velocity

$$F > F_R$$
 $F_R = \mu_K \cdot F_N$

 F_B force of dynamic friction, μ_K coefficient of dynamic friction, F_N normal force, F external force

